Long Branch Central Watershed Management Area
Implementation Work Plan

- Field Assessments and Prioritization
- Project Area Overview
- Project Description and Concept Map
- Design Groupings
- Construction and Permitting Groupings
- Monitoring and Project Goals
- Restoration Techniques
Overall approach to restoring Long Branch consists of four phases. Phase I is nearing completion. Phase IV and public outreach are ongoing.

For more information, see Attachment A: Response to Long Branch Central Watershed Management Area, Stream & Outfall Design, Construction Admin & As-Built Services RFP, Proposed And Preliminary Scopes Of Work.
Existing Information Review and Field Assessment Work Plan

- Reviewed existing watershed information, data and mapping
- Developed public outreach and participation plan
- Developed preliminary restoration goals
- Developed the field assessment plan
- Developed preliminary approach to monitoring

<table>
<thead>
<tr>
<th>Drainage Area</th>
<th>3.8 square miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Imperviousness</td>
<td>27%</td>
</tr>
<tr>
<td>Stream Length</td>
<td>Approx. 12 miles</td>
</tr>
<tr>
<td>Land Use</td>
<td>Residential (58%)</td>
</tr>
<tr>
<td></td>
<td>Non-Residential (28%)</td>
</tr>
<tr>
<td></td>
<td>Open Space (3%)</td>
</tr>
<tr>
<td></td>
<td>Recreation (11%)</td>
</tr>
</tbody>
</table>

For more information, see Attachment B: Long Branch Central Watershed Management Restoration Framework
Field Assessment and Restoration Opportunity Identification

Stream Corridor Assessments
Assessed ~12 miles of stream and ~150 outfalls
Assessments conducted:
- Stream Restoration Assessment
- Physical Habitat Assessment
- Floodplain Vegetation Assessment
- BANCS Assessment
- Miscellaneous (resident interactions & points of interest)
- Pipe Crossing
- Outfall: RSC Potential
- Outfall: Repair Needs

County-Maintained Stormwater Facility Assessments
Assessed retrofit potential of 21 existing stormwater management facilities

For more information, see Attachment C: Long Branch Field Assessment Report
Phase I.B – Field Assessment and Restoration Opportunity Identification

Preliminary Project Identification and Prioritization

— Watershed assessment data used to identify and prioritize potential projects.

— Scoring schemas developed for three project types: stream restoration, RSCs, and stormwater BMP retrofits.

— For stream restoration, prioritization scoring criteria applied on a reach-by-reach basis.

— Each potential project scored within its project type.

— While scoring metrics varied by project type, a similar scoring framework developed and applied across all three project types.

— Scoring metrics organized into three bins:
 o **Ecological benefits**: parameters included sediment load addressed, floodplain vegetation quality, etc.
 o **Ancillary benefits**: parameters included public input obtained via County complaints database, correspondence with County staff, field crew interactions, and the public input map.
 o **Feasibility**: parameters included constraints, property ownership, access, etc.

For more information, see Attachment C: Long Branch Field Assessment Report
Environmentally Sensitive Areas Mapping

Prepared preliminary watershed-wide mapping of known high quality and environmentally sensitive areas.

- Streams
- Resource Protection Areas
- Wetlands
- FEMA 100-year Floodplain
- Fairfax County Floodplain
- Trails
- Monitoring Stations
- Citizen Responses – Areas of Concern and Areas of Value

Used existing data only, no additional field assessments or surveys conducted.

More detailed field assessments to be conducted prior to design.
Recommended Projects

Aggregated the stream reaches and outfalls verified in Phase I.B into project opportunities:

- 15 stream restoration projects
- 2 stream restoration + stormwater retrofit projects
- 4 stormwater retrofit projects

Aggregation driven by proximity, access, and project synergies (e.g., two outfalls that discharge to an adjacent stream reach will be considered one project).

For more information, see Attachment D: Long Branch Restoration Opportunity Project Descriptions
Recommended Projects

Headwaters

— Newcombe Stormwater Pond
— Holly Park Stormwater Pond
— Smokewood Park, North of Laurel Street
— Smokewood Park, South of Laurel Street
— Somerset – Ceralene Drive to Dansk Court
— Dansk Court to Flintridge Court
Recommended Projects

Upper Mainstem

- Olde Forge Park
- Olde Creek Elementary School to Pickett Road
- Pickett Road to Tara Drive
Recommended Projects

Rutherford Park
- Olley Lane Regional Stormwater Pond near Surrey Square Park
- Kristin Lane to Rutherford Park
- El James Drive to Rutherford Park
- Rutherford Park
- Guinea Road to Tabard Place
Recommended Projects

Willow Woods
- Ilda Pool at Braeburn Drive
- Willow Woods Park South of Braeburn Drive
Recommended Projects

Lower Mainstem
- Tabard Place to Woodland Way
- Woodland Way to Dora Court
- Long Branch Stream Valley Park – Dora Court to Cockney Court
- Canterbury Woods Park – Cockney Court to Wakefield Chapel Road
- Woodland Meadows Court Stormwater Pond (project dropped, maintenance issue, not a retrofit option)
Canterbury Woods Park – Cockney Court to Wakefield Chapel Road

Overview
The Ilda Pool at Braeburn Drive project is located on land owned by the Ilda Community Recreation Association Inc. north of Braeburn Drive and east of the Ilda community pool. The restoration project area includes 760 linear feet of stream and forested stream corridor dominated by mature upland mixed hardwood trees. The existing understory vegetation is of sub-optimal quality with canopy gaps and invasive plant species. An active sewer line runs adjacent to and crosses the stream, where an exposed sewer pipe has been identified.

The project area includes two perennial channels that are downcut due to past increases in stormwater runoff from development throughout the contributing drainage area. The banks along the channels are three (3) to six (6) feet with shallow to well-established root depths exposing the banks with shallow root depths to continued erosion. The Ilda community pool discharges into the channel near the exposed sewer pipe and has begun undercutting several mature trees. The channel closest to the pool discharges from a large concrete channel which is undercut by erosion.

Restoration Goals and Methods
This project will focus on protecting existing infrastructure; stabilizing the eroding stream channels to stop current and prevent future channel erosion; and improving floodplain function, aquatic habitat, and the health of the riparian forest throughout the corridor.

Restoration methods that may be employed:
- Place wood and rock structures within stream channels to protect existing sewer infrastructure, reduce channel erosion, increase channel "roughness", and improve habitat for fish and macroinvertebrates. Channel extents may be altered to protect existing sewer infrastructure and some grading will occur.
- Large wood may be placed in the streams on a limited basis to protect banks and improve habitat for fish and other aquatic organisms.
- Placement of wood to increase channel and floodplain "roughness", improve resiliency, and improve both habitat and biodiversity.
- Protect older mature trees on east side of channel north of Braeburn Drive.
- Control invasive plant species.
- Restoration planting throughout the floodplain. Trees in poor health may be removed to reduce hazard trees, open light gaps to assist in regeneration, and provide large woody debris.
Canterbury Woods Park – Cockney Court to Wakefield Chapel Road
Long Branch Stream Valley Park – Dora Court to Cockney Court

Overview
This restoration project in the Long Branch Stream Valley Park extends from Dora Court to Cockney Court and is located on Fairfax County Park Authority property. It potentially includes land owned by the Canterbury Woods Swim Club. The restoration project area includes 3,320 linear feet of stream, regulated floodplains and wetlands, and a forested stream corridor with many intermediate age floodplain trees present. The existing floodplain understory vegetation is of marginal quality with a large presence of invasive plant species. An active sewer line runs along the stream and crosses the stream multiple times, where an exposed manhole and sewer pipe have been identified. A high traffic natural surface trail is located within the project area.

The Long Branch mainstem is a perennial stream that has downcut and widened due to past increases in stormwater runoff from development throughout the contributing drainage area. The banks along the mainstem are three (3) to seven (7) feet high with shallow tree root depths and a lack of surface protection exposing the banks to continued erosion. The mainstem is threatening existing sewer and trail infrastructure and is disconnected from the floodplain. Three separate outfall channels drain to the Long Branch mainstem from King Richard Drive, Queen Elizabeth Boulevard, and English Drive. These channels are intermittent and downcut with banks ranging from four (4) to six (6) high.

Restoration Goals and Methods
This project will focus on protecting existing infrastructure, stabilizing the eroding mainstem and outfall channels to stop current and prevent future channel erosion, improve floodplain function and aquatic habitat, and enhance the health of the forest throughout the stream corridor.

Restoration methods that may be employed:
- Place rock structures within the mainstem to reduce channel erosion, increase channel "roughness", and improve habitat for fish and other aquatic organisms. Channel extents will be altered to protect private property and existing sewer and trail infrastructure, and some grading will occur.
- Channel restoration of intermittent channels using regenerative stormwater conveyance to capture and infiltrate stormwater, reduce, and prevent channel erosion and elevate and restore ground water elevations which improve channel base flow to better support aquatic organisms.
- Large wood may be placed in the mainstem and outfall channels on a limited basis to protect banks and improve habitat for fish and other aquatic organisms.
- Control invasive plant species.
- Conduct restoration planting throughout the floodplain. Note that trees in poor health in the floodplain may be removed to reduce hazard trees, open light gaps to assist in regeneration, and provide large woody debris to improve stream and floodplain stability and habitat and to increase "roughness" to reduce erosion and trap organic debris.
Long Branch Stream Valley Park – Dora Court to Cockney Court
Woodland Way to Dora Court

Overview

The Woodland Way to Dora Court project is located on Fairfax County Park Authority property east of Woodland Way between Queen Elizabeth Boulevard and Althea Drive and is bound by private properties to the north and south. The restoration project area includes 1,780 linear feet of stream, regulated floodplains and wetlands, and a forested stream corridor with many mature trees present. The existing floodplain understory vegetation ranges between poor and optimal quality with some presence of invasive plant species. An active sewer line runs along the stream and crosses the stream multiple times, where an exposed manhole has been identified. A high traffic natural surface trail is located within the project area.

The Long Branch mainstem is a perennial stream that has downcut and widened due to past increases in stormwater runoff from development throughout the contributing drainage area. The banks along the mainstem are three (3) to six (6) feet high with shallow tree root depths and density exposing the banks to continued erosion. One outfall channel drains from Queen Elizabeth Boulevard south to the Long Branch mainstem, while another outfall channel drains from Woodland Way east to the Long Branch mainstem. These channels are intermittent and downcut with banks ranging from three (3) to four (4) feet high. An exposed manhole is located on the outfall channel from Queen Elizabeth Boulevard.

Restoration Goals and Methods

This project will focus on protecting existing infrastructure, stabilizing the eroding mainstem and outfall channels to stop current and prevent future channel erosion, and improve floodplain function and aquatic habitat, while protecting the surrounding good quality forest and enhancing areas where the forested stream corridor are degraded.

Restoration methods that may be employed:

- Place rock structures within the mainstem to reduce channel erosion, increase channel "roughness", and improve habitat for fish and other aquatic organisms. Structures will be placed in the current channel extents and some grading will occur.
- Stabilize outfall channels using rock and wood structures to reduce channel erosion and improve habitat where possible. Outfall channel alignment may be altered to protect existing sewer infrastructure.
- Large wood may be placed in the mainstem and outfall channels on a limited basis to protect banks and improve habitat for fish and other aquatic organisms.
- Control invasive plant species.
- Conduct restoration planting throughout the floodplain. Note that trees in poor health in the floodplain may be removed to reduce hazard trees, open light gaps to assist in regeneration, and provide large woody debris to improve stream and floodplain stability and habitat and to increase "roughness" to reduce erosion and trap organic debris.
Woodland Way to Dora Court
Willow Woods Park South of Braeburn Drive

Overview
The Willow Woods Park project is located on Fairfax County Park Authority property south of Braeburn Drive and west of Ponderosa Drive, and potentially includes land owned by the Canterbury Woods Elementary School. Private properties surround the restoration project area, which includes 1,500 linear feet of stream and forested stream corridor dominated by mature upland mixed hardwood trees. The existing understory vegetation is of good to fair quality with some invasive plant species particularly near the outfall at Braeburn Drive. An active sewer line runs adjacent to the stream and crosses the stream, where an exposed sewer pipe has been identified. High traffic asphalt and natural surface trails with a large pedestrian foot bridge are located within the project area.

The Willow Woods Park stream is a perennial channel that has downcut and widened due to past increases in stormwater runoff from development throughout the contributing drainage area. The banks along the perennial channel are two (2) to ten (10) feet with shallow root depths and a lack of surface protection exposing the bank to continued erosion. These high bank heights combined with the ongoing widening of the channel have disconnected the channel from its floodplain. An intermittent outfall channel enters the Willow Woods Park stream from Ponderosa Drive and has banks ranging from two (2) to five (5) high.

Restoration Goals and Methods
This project will focus on protecting existing trees, infrastructure and private properties; stabilizing the eroding stream and outfall channel to stop current and prevent future channel erosion; improving floodplain function and habitat for fish and other aquatic organisms; and improving the health of the riparian forest throughout the corridor.

Restoration methods that may be employed:
- Place wood and rock structures within stream and outfall channels to reduce channel erosion and migration toward private property, increase channel “roughness”, and improve habitat for fish and macroinvertebrates. Channel extents may be altered to protect private property and existing sewer infrastructure, and some grading will occur.
- Work largely within the stream channel to protect surrounding trees and forest community.
- Large wood may be placed in the stream and outfall channel on a limited basis to protect banks and improve habitat for fish and other aquatic organisms.
- Placement of wood to increase channel and floodplain “roughness”, improve resiliency, and improve both habitat and biodiversity.
- Control invasive plan species.
- Restoration planting throughout the floodplain. Trees in poor health may be removed to reduce hazard trees, open light gaps to assist in regeneration, and provide large woody debris.
Willow Woods Park South of Braeburn Drive
Ilda Pool at Braeburn Drive

Overview
The Ilda Pool at Braeburn Drive project is located on land owned by the Ilda Community Recreation Association Inc. north of Braeburn Drive and east of the Ilda community pool. The restoration project area includes 760 linear feet of stream and forested stream corridor dominated by mature upland mixed hardwood trees. The existing understory vegetation is of sub-optimal quality with canopy gaps and invasive plant species. An active sewer line runs adjacent to and crosses the stream, where an exposed sewer pipe has been identified.

The project area includes two perennial channels that are downcut due to past increases in stormwater runoff from development throughout the contributing drainage area. The banks along the channels are three (3) to six (6) feet with shallow to well-established root depths exposing the banks with shallow root depths to continued erosion. The Ilda community pool discharges into the channel near the exposed sewer pipe and has begun undercutting several mature trees. The channel closest to the pool discharges from a large concrete channel which is undercut by erosion.

Restoration Goals and Methods
This project will focus on protecting existing infrastructure; stabilizing the eroding stream channels to stop current and prevent future channel erosion; and improving floodplain function, aquatic habitat, and the health of the riparian forest throughout the corridor.

Restoration methods that may be employed:

- Place wood and rock structures within stream channels to protect existing sewer infrastructure, reduce channel erosion, increase channel "roughness", and improve habitat for fish and macroinvertebrates. Channel extents may be altered to protect existing sewer infrastructure and some grading will occur.

- Large wood may be placed in the streams on a limited basis to protect banks and improve habitat for fish and other aquatic organisms.

- Placement of wood to increase channel and floodplain "roughness", improve resiliency, and improve both habitat and biodiversity.

- Protect older mature trees on east side of channel north of Braeburn Drive.

- Control invasive plant species.

- Restoration planting throughout the floodplain. Trees in poor health may be removed to reduce hazard trees, open light gaps to assist in regeneration, and provide large woody debris.
Ilda Pool at Braeburn Drive
Overview
This restoration project extends from Tabard Place east to Woodland Way and is located on Fairfax County Park Authority property. The Fairfax County Park Authority property is bound by private properties to the north and south throughout the entire restoration project area. The restoration area includes 3,340 linear feet of stream, regulated floodplains and wetlands, and a forested riparian corridor with many mature trees. The existing floodplain understory is minimal and overshadowed by Beech and Tulip Poplars with little presence of invasive plant species. An active sewer line runs along the stream and crosses it in multiple locations; however, no exposed pipes have been identified. A high traffic asphalt and natural surface trail with a large pedestrian foot bridge is located within the project area.

The western (upstream) stream reaches, and associated outfall channels, have downcut and widened due to past increases in stormwater runoff from development throughout the contributing drainage area. The stream banks along these segments (shown on the restoration opportunity map in red, orange, and yellow) are three (3) to six (6) feet high with shallow tree root depths and a lack of surface protection exposing the banks to continued erosion. The stream here is disconnected from its floodplain. The eastern (downstream) stream reaches (shown on the restoration opportunity map in green) are in good condition with stable stream features and good instream habitat, although there are areas with undermined trees falling into the stream and causing limited erosion. The stream is connected to its floodplain in this area, with erosion on the floodplain due to excessive storm flows which remove leaf litter and organic debris. The floodplain forest has almost no understory or tree recruitment due to excessive browsing by white-tailed deer. Although there are many large trees, the overall forest diversity is low. The farthest downstream part of the project area has a steep stream slope toward Woodland Way. This steep stream reach could become unstable in the future, causing significant erosion and adjustment of the stable portion immediately upstream.

Restoration Goals and Methods
This project will focus on stabilizing the eroding reaches on the upstream portion of the project area, improving aquatic habitat, protecting the stable downstream portion of the project area, preventing stream erosion near Woodland Way, and improving the health of the riparian forest throughout the corridor.

Restoration methods that may be employed:
- Place rock structures within western stream reaches and near Woodland Way to reduce channel erosion and migration toward private property, increase channel "roughness", and improve habitat for fish and other aquatic organisms. Structures will be placed in the existing channel extents and some grading will occur.
- Stabilize outfall channels using rock and wood structures to stop erosion and improve habitat where possible.
- Protect the stable eastern stream reaches except in isolated areas where undermined trees may be taken down to prevent them falling in the stream. Large wood may be placed in the channel on a limited basis to protect banks and improve habitat for fish and other aquatic organisms.
- Placement of wood to increase channel and floodplain "roughness", improve resiliency, and improve both habitat and biodiversity.
- Conduct restoration planting throughout the floodplain. Trees in poor health may be removed to reduce hazard trees, open light gaps to assist in regeneration, and provide large woody debris.
LONG BRANCH CENTRAL WATERSHED IMPLEMENTATION WORK PLAN

Tabard Place to Woodland Way
Overview
The Guinea Road to Tabard Place project is located on Fairfax County Park Authority property east of Guinea Road and Rutherford Park between Braeburn Drive and King Solomon Drive and is bound by private properties to the north, south, and east. The restoration project area includes 1,620 linear feet stream and outfall channel, regulated floodplains and wetlands, and a forested stream corridor with many mature floodplain to mesic trees present. The existing floodplain understory consists of sub-optimal quality vegetation and has a fair amount of invasive plant species present. An active sewer line runs along the stream and crosses the stream once, where an exposed manhole has been identified. A high traffic asphalt and natural surface trail is located within the project area.

The stream is part of the Long Branch mainstem and has downcut and widened due to past increases in stormwater runoff from development throughout the contributing drainage area. The banks along the mainstem are three (3) to six (6) feet high with shallow tree root depths and lack of surface protection exposing the banks to continued erosion. One outfall channel drains from King Solomon Drive northeast to the Long Branch mainstem. The outfall channel is downcut and intermittent with banks ranging from four (4) to six (6) feet high.

Restoration Goals and Methods
This project will focus on protecting existing infrastructure, stabilizing the eroding mainstem and outfall channels to stop current and prevent future channel erosion, and improve floodplain function and aquatic habitat, while protecting the surrounding sub-optimal quality forest and enhancing areas where the forested stream corridor are degraded.

Restoration methods that may be employed:

- Place rock structures within the mainstem to reduce channel erosion, increase channel "roughness", and improve habitat for fish and other aquatic organisms. Structures will be placed in the current channel extents and some grading will occur. Minor channel alignment modifications will occur to protect existing sewer infrastructure.

- Channel restoration of intermittent outfall channel using regenerative stormwater conveyance to capture and infiltrate stormwater, reduce, and prevent channel erosion and elevate and restore ground water elevations which improve channel base flow to better support aquatic organisms.

- Large wood may be placed in the mainstem and outfall channels on a limited basis to protect banks and improve habitat for fish and other aquatic organisms.

- Control invasive plant species.

- Conduct restoration planting throughout the floodplain. Note that trees in poor health in the floodplain may be removed to reduce hazard trees, open light gaps to assist in regeneration, and provide large woody debris to improve stream and floodplain stability and habitat and to increase "roughness" to reduce erosion and trap organic debris.
Guinea Road to Tabard Place
Rutherford Park

Widening channel to be accessed via Rutherford Park.

Widening channel with actively eroding banks and lack of trees.

Widening channel with poor floodplain vegetation quality.

Overhead electric lines and road bridge at end of stream segment 0030-008.

Overview

The Rutherford Park project is located on Fairfax County Park within Rutherford Park. The restoration project area includes 870 linear feet of stream, regulated floodplains, and a forested stream corridor with a few mature floodplain trees. The existing floodplain understory vegetation is of poor quality as much of it is maintained lawn with some invasive plant species present in unmaintained areas. Sewer lines and overhead electric lines are in the project area but are not exposed or being impacted. High traffic paved and natural surface trails are located within the project area as well as one old steel pedestrian bridge across the mainstem of the creek.

The project area consists of two perennial, incised stream channels that have downcut and widened due to past increases in stormwater runoff from development throughout the contributing drainage area. The banks along the mainstem are three (3) to six (6) feet high with shallow tree root depths exposing the banks to continued erosion. Earth Sangha has worked with volunteers for many years to restore vegetation along the southern stream bank between the channel and the parking lot.

Restoration Goals and Methods

This project will focus on stabilizing the eroding stream channels to stop current and prevent future channel erosion, improving floodplain function and habitat for fish and other aquatic organisms, protecting the previous restoration plantings by Earth Sangha, and enhancing areas where the forested stream corridor is degraded.

Restoration methods that may be employed:

- Place rock structures within the stream channels to reduce channel erosion, increase channel "roughness", and improve habitat for fish and other aquatic organisms. Structures will be placed in the current channel extents and some grading will occur.
- Large wood may be placed in the channels on a limited basis to protect banks and improve habitat for fish and other aquatic organisms.
- Control invasive plant species and conduct restoration planting throughout the floodplain. Note that trees in poor health in the floodplain may be removed to reduce hazard trees, open light gaps to assist in regeneration, and provide large woody debris to improve stream and floodplain stability and habitat and to increase "roughness" to reduce erosion and trap organic debris.
Rutherford Park
Kristin Lane to Rutherford Park

Overview

The Kristin Lane to Rutherford Park project is located on Fairfax County Park Authority property within Rutherford Park west of Braeburn Drive and just northeast of the baseball fields and pool. This project area is surrounded by private properties to the west and east with 300 linear feet of stream on private property. The project area includes 2,230 linear feet stream, regulated floodplains, and a narrow forested corridor with scattered mature trees. The existing floodplain understory vegetation is of poor quality with a large presence of invasive plant species. An active sewer line runs adjacent to the stream and crosses the stream once, but no exposures have been identified. A natural surface trail is located within the project area.

The stream is an incised, perennial channel that has downcut and widened due to past increases in stormwater runoff from development throughout the contributing drainage area. The banks along the stream are two (2) to five (5) feet high with root depths extending halfway down the bank, exposing the bottom of the bank to continued erosion. The channel is imposing on private properties, and several homeowners along Braeburn Drive experience regular yard flooding.

Restoration Goals and Methods

This project will focus on protecting private properties and public infrastructure, channel relocation, and stabilizing the stream to stop current and prevent future erosion. This project will also look to improve floodplain function and habitat for fish and other aquatic organisms, while enhancing the health of the forest stream corridor and controlling invasive species.

Restoration methods that may be employed:

- Channel relocation to move the channel from private properties onto Park Authority property.
- Place wood and rock structures throughout stream extents to reduce erosion, increase channel “roughness”, and improve habitat for fish and other aquatic organisms.
- Large wood may be placed in the channel on a limited basis to protect banks and improve habitat for fish and other aquatic organisms.
- Creation of wetlands in open space of Rutherford Park to provide area and volume of water storage.
- Control invasive plant species.
- Conduct restoration planting throughout the floodplain. Note that trees in poor health in the floodplain may be removed to reduce hazard trees, open light gaps to assist in regeneration, and provide large woody debris to improve stream and floodplain stability and habitat and to increase “roughness” to reduce erosion and trap organic debris.
- Create positive drainage from the stormwater outfall pipe that enters the park from Kristen Lane just north of the Rutherford Pool so that stormwater flows freely to the stream channel.
Kristin Lane to Rutherford Park
El James Drive to Rutherford Park

Overview
The El James Drive to Rutherford Park project is located on Fairfax County Park Authority and potentially on private property west of Rutherford Park and southeast of Briar Patch Lane. This project area is surrounded by private properties to the north, west, and south and includes 1,200 linear feet stream and a forested stream corridor dominated by mature upland mixed hardwood trees. The existing understory vegetation is of poor quality with invasive plant species present.

The project area consists of an incised perennial channel and intermittent outfall channel that have downcut and widened due to past increases in stormwater runoff from development throughout the contributing drainage area. The banks along the perennial channel range from two (2) to seven (7) with shallow root depth and density exposing the banks to continued erosion. The outfall channel has six (6) foot banks that are subject to ongoing erosion due to shallow root depths.

Restoration Goals and Methods
This project will focus on protecting private properties, stabilizing the eroding stream and outfall channel to stop current and prevent future erosion, improving floodplain function, reducing erosive stormwater flows, protecting better quality forest along the south bank behind the homes on Bayard Place and enhancing the poor-quality forest particularly south of the tennis courts, north of the stream and around the outfall from Briar Patch Lane.

Restoration methods that may be employed:
- Place wood and rock structures throughout stream extents to reduce erosion, increase channel "roughness", and improve habitat for fish and other aquatic organisms. Structures will be placed in the current channel extents and some grading will occur.
- Channel restoration of outfall channel using regenerative stormwater conveyance to capture and infiltrate stormwater, reduce and prevent channel erosion, while elevating and restoring ground water elevations which improve channel base flow for aquatic organisms.
- Work within the stream and outfall channel where possible to prevent damage to the mature trees, while removing undermined trees on the channel edge to prevent future bank failure.
- Large wood may be placed in the channel on a limited basis to protect banks and improve habitat for fish and other aquatic organisms.
- Conduct restoration planting to enhance the forest condition and improve biodiversity in sub-optimal quality forest and provide young trees and shrubs.
El James Drive to Rutherford Park
Olley Lane Regional Stormwater Pond near Surrey Square Park

Overview
The Olley Lane Regional Stormwater Pond is located just south of Surrey Square Park and was constructed in the late 1990s. A tributary to Long Branch flows from the northwest through a partially eroded channel into the pond, and then continues downstream of Olley Lane on landed owned by Fairfax County. The restoration project area includes the pond and eroded portion of the stream channel to the north. To the east and west, the pond is surrounded by private property. The existing pond bottom is wet and invasive species including phragmites dominate the groundcover. Some repairs are needed in stream channel, within the pond itself, and at the outfall structure.

Restoration Goals and Methods
This project could include improvements to the stormwater pond to increase stormwater detention, reduce erosive flows, and provide additional habitat. Restoration of the eroded stream channel upstream of the pond could also be included to stop erosion and the flow of sediment into the pond. All work will be performed on property owned by Fairfax County and will incorporate the protection of the upland forest community along with restoration and wetland plantings to enhance the overall quality of the stream corridor.

Restoration methods that may be employed:
- Potential stormwater pond retrofit to maximize storage, provide water quality using a wetland bottom within the pond, and reduce the intensity of water leaving the pond to reduce the potential for channel erosion downstream.
- Potential channel restoration to reduce erosion and sediment entering the stormwater pond.
- Conduct restoration planting to supplement good quality forest and provide additional young trees, shrubs, and wetland species.
Olley Lane Regional Stormwater Pond near Surrey Square Park
Overview
The Pickett Road to Tara Drive project is located on Fairfax County Park Authority with a potential to extend the project onto private property. The project area is bound by private properties to the northwest and southeast and includes 2,560 linear feet of stream, regulated floodplains and wetlands, and a forested stream corridor dominated by mature mesic floodplain tree species. The existing understory vegetation is of optimal quality upstream of the confluence with the stream flowing from Olde Forge Park under Twinbrook Road with few invasive plant species present. The forest condition is more degraded along this stream and along the mainstem downstream of the confluence although there are many mature trees. A high traffic asphalt and natural surface trail along with an existing playground and basketball court is located within the project area.

A portion of the project is located along the Long Branch mainstem, which is a perennial stream that has downcut and widened due to past increases in stormwater runoff from development throughout the contributing drainage area. The banks along the mainstem are three (3) to six (6) feet high with shallow tree root depths and lack of surface protection exposing the banks to continued erosion. The high banks combined with the ongoing widening of the channel have left the channel disconnected from its floodplain. An outfall channel from Twinbrook Road flows northeast toward the mainstem. This is a perennial channel that has downcut and widened due to point source discharges. The banks range from two (2) to six (6) feet high with shallow root depths and little surface protection exposing the banks to erosion.

Restoration Goals and Methods
This project will focus on stabilizing the eroding mainstem and outfall channels to stop current and prevent future channel erosion, improving floodplain function and habitat for fish and other aquatic organisms, while protecting the high quality forest along the mainstem upstream of the confluence with the tributary from Twinbrook Road as well as mature trees throughout the project area to the greatest extent possible and enhancing areas where the forested stream corridor is degraded.

Restoration methods that may be employed:

- Place rock structures within the mainstem to reduce channel erosion, increase channel "roughness", and improve habitat for fish and other aquatic organisms. Structures will be placed in the current channel extents and some grading will occur.
- Stabilize outfall channel using wood and rock structures to reduce channel erosion and improve habitat where possible.
- Large wood may be placed in the mainstem and outfall channel on a limited basis to protect banks and improve habitat for fish and other aquatic organisms.
- Conduct restoration planting to supplement optimal quality forest and provide young trees and shrubs.
Pickett Road to Tara Drive
Olde Forge Park

Overview

The Olde Forge Park project is located on Fairfax County Park Authority property east of Pickett Road between Nan Mill Lane and Twinbrook Road, and potentially includes land owned by the Korean Presbyterian Church of Washington and the Brandywine Swim Club. The restoration project area includes an existing stormwater pond, several degraded outfalls and 2,180 linear feet of stream channel located within a forested stream corridor dominated by mature mixed hardwood tree species. The existing understory vegetation is of optimal quality with a few invasive plant species present, although the presence of wavy-leaf basket grass was noted. Private properties surround the forested corridor in all directions.

The stream originates at the stormwater pond outfall on the property of the Korean Presbyterian Church of Washington and continues until discharging into an existing culvert underneath Twinbrook Road. The stream is a downcut ephemeral channel which is actively widening and incising. The stream banks range between one (1) and seven (7) feet with a mix of shallow and well-established tree root depths. The banks are exposed to continued erosion. Two outfall channels drain from Pickett Road between the Brandywine Swim Club. These channels have multiple headcuts along their alignments and are actively widening. There are four (4) concrete lined outfall channels coming from the Brandywine swim club parking lot. All stream segments within this project are disconnected from the adjacent floodplain. The dry pond located on the Korean Presbyterian Church of Washington property was constructed in 1979. Some repairs are needed at the outfall structure.

Restoration Goals and Methods

This project could include improvements to the stormwater pond and concrete channel outfalls on private property to increase stormwater detention and reduce erosive outfall flows. The project will include restoration of the channels on parkland to capture stormwater flows, stop current and prevent future channel erosion, protection of the surrounding, good quality upland forest, and restoration plantings to enhance areas where the forested riparian corridor are degraded near the church stormwater pond and the swim club outfalls.

Restoration methods that may be employed:

- Potential stormwater pond retrofit on the Korean Presbyterian Church of Washington property to maximize storage, capture additional flows leaving the parking lot, provide water quality using a wetland bottom within the pond, and reduce intensity of water leaving the pond to reduce channel erosion.
- Potential outfall improvements from Brandywine Swim Club to reduce channel erosion.
- Channel restoration of intermittent channels in Olde Forge Park using regenerative stormwater conveyance to capture and infiltrate stormwater, reduce and prevent channel erosion, while elevating and restoring ground water elevations which improve channel base flow for aquatic organisms.
- Restoration of perennial portions of the stream to reduce erosion and protect surrounding forests from continued tree loss.
- Work within the stream channels to prevent damage to surrounding good quality upland forest, while removing undermined trees on the channel edge to prevent future bank failure.
- Control invasive plant species.
- Conduct restoration planting to supplement good quality forest and provide young trees and shrubs to replace those lost due to excessive deer browse.
Olde Forge Park
Olde Creek Elementary School to Pickett Road

Overview
The Olde Creek Elementary School to Pickett Road project is located on Fairfax County Park Authority property northwest of Pickett Road, and potentially includes land owned by Fairfax County Public Schools at . The project area is bound by private properties to the northeast and southwest and includes 3,290 linear feet of stream, regulated floodplains, and a forested stream corridor dominated by mature mesic mixed hardwood tree species with poor understory vegetation and invasive plant species. An active sewer line runs adjacent to the stream and crosses once at an identified line exposure. An active gas line runs adjacent to an outfall channel located in the project area and crosses the stream once; however, no exposures have been identified. A high traffic natural surface trail is located within the restoration project.

A majority of the project occurs along the Long Branch mainstem, a perennial stream that has downcut and widened due to past increases in stormwater runoff from development throughout the contributing drainage area. The banks along the mainstem area three (3) to fifteen (15) feet high with shallow root depths and a lack of surface protection exposing the banks to continued erosion. These high bank heights combined with channel widening have left the channel entrenched and disconnected from its floodplain.

An outfall channel northeast of Stevebrook Road discharges into the Long Branch mainstem and is an incised, perennial channel. The banks range between three (3) to five (5) feet high with shallow root depths and lack of surface protection exposing the banks to erosion. Another outfall channel enters the mainstem from Barkwood Court. This downcut, ephemeral channel is actively widening due to point source discharges and has banks ranging from almost one (1) to four (4) feet in height. This channel also has a shallow root depth with little surface protection exposing the banks to continued erosion.

Restoration Goals and Methods
This project will focus on protecting existing infrastructure, stabilizing the eroding mainstem and outfall channels to stop current and prevent future channel erosion, improving floodplain function, habitat for fish and other aquatic organisms, and the health of the riparian forest throughout the stream corridor.

Restoration methods that may be employed:

- Place rock and wood structures within the mainstem and perennial outfall channel to reduce channel erosion, increase channel "roughness", and improve habitat for fish and other aquatic organisms. Structures will be placed in the existing channel extents and some grading will occur.
- Channel restoration of the ephemeral channel using regenerative stormwater conveyance to capture and infiltrate stormwater, reduce and prevent channel erosion, while elevating and restoring ground water elevations which improve channel base flow to better support aquatic organisms.
- Large wood may be placed in the mainstem and outfall channels to increase “roughness”, protect banks, and improve habitat for fish and other aquatic organisms. Similar to the above, this approach might include some grading.
- Placement of wood to increase floodplain "roughness", improve resiliency, and improve both habitat and biodiversity throughout the floodplain.
- Control invasive plant species and conduct restoration planting throughout the floodplain. Trees in poor health may be removed to reduce hazard trees, open light gaps to assist in regeneration, and provide large woody debris.
Olde Creek Elementary School to Pickett Road
Dansk Court to Flintridge Court

Overview
The Dansk Court to Flintridge Court project is located on Fairfax County Park Authority property, and potentially includes land owned by Somerset South Homeowner Association and Fairfax Memorial Park. The Somerset South Homeowner Association property is bound by private properties to the south and the Calvary Memorial Park to the north. The restoration project area includes 1,840 linear feet of stream, regulated floodplain, and forested stream corridor with some mature trees present. The existing understory vegetation is of poor quality and is dominated by invasive plant species. There is a natural trail through this restoration project area.

The perennial stream has downcut and widened due to past increases in stormwater runoff from development throughout the contributing drainage area. The banks along the perennial stream area two (2) to six (6) feet high with shallow root depths and a lack of surface protection exposing the bank to continued erosion.

Five incised, ephemeral outfall channels discharges into the stream: one from Flintridge Court, two from Doulton Court, and two from Demby Drive. The banks along the outfall channels are one (1) to four (4) feet steep banks with low root density and depth and very sparse trees along the immediate streambank area.

Restoration Goals and Methods
This project will focus on stabilizing the eroding mainstem and outfall channels to stop current and prevent future channel erosion, improve floodplain function and reduce erosive stormwater flows, and controlling invasive plant species while restoring the health of the forest throughout the stream corridor.

Restoration methods that may be employed:
- Place wood structures supplemented with rock structures within the perennial stream to reduce channel erosion, increase channel "roughness", and improve habitat for fish and other aquatic organisms. Structures will be placed within the existing channel extents, and some grading will occur.
- Channel restoration of ephemeral outfall channels using rock and wood structures to reduce and prevent channel erosion and improve habitat where feasible.
- Large wood may be placed in the mainstem and outfall channels to increase "roughness", protect banks, and improve habitat for fish and other aquatic organisms.
- Placement of wood to increase floodplain "roughness", improve resiliency, and improve both habitat and biodiversity throughout the floodplain.
- Control invasive plant species.
- Conduct restoration planting throughout the floodplain. Trees in poor health may be removed to reduce hazard trees, open light gaps to assist in regeneration, and provide large woody debris.
Dansk Court to Flintridge Court

Long Branch Central Watershed
Fairfax County, Virginia
Restoration Opportunity:
Dansk Court to Flintridge Court

September 2022

Existing Conditions
- National Wetland Inventory
- Floodplain Vegetation Quality
- Restoration Priority

Existing Infrastructure
- Storm Drain Network

Restoration Elements
- Geoswale
- Channel Realignment
- Channel Modification
LONG BRANCH CENTRAL WATERSHED IMPLEMENTATION WORK PLAN

Somerset – Ceralene Drive to Dansk Court

Overview

The Somerset – Ceralene Drive to Dansk Court project is located north of Ceralene Drive, and potentially includes land owned by Somerset South Homeowner Association and Fairfax Memorial Park. The restoration project area includes an existing stormwater pond, a degraded outfall channel and 1,230 linear feet of stream channel located within a forested stream corridor with some mature trees. The existing understory vegetation is of poor quality and is dominated by invasive plant species. Private properties surround the forested stream corridor in all directions. There is a natural surface trail through this restoration project area.

The project area consists of two perennial stream channels that originate from a stormwater pond outfall. The first perennial stream, located north of Ceralene Drive, originates from a county maintained dry stormwater pond outfall on the property of Somerset South Homeowner Association. This perennial channel is actively widening and incising, with banks ranging between three (3) and eight (8) feet high with shallow tree root depths, exposing the banks to continued erosion. A downcut, ephemeral outfall channel drains to the perennial stream from Dansk Court and has three (3) to eight (8) foot high banks. The second perennial stream channel originates at a pond outfall on the Fairfax Memorial Park property and has downcut due to increased stormwater runoff from land use changes throughout the contributing drainage area. This perennial stream has banks ranging between three (3) to eight (8) feet high with shallow root depths and lack of surface protection, exposing the banks to continued erosion.

Restoration Goals and Methods

This project could include improvements to the county-maintained stormwater pond on Somerset South Homeowner Association property to increase stormwater detention and reduce erosive outfall flows. The project could also include the restoration of the perennial stream and outfall channels located on private property to capture stormwater flows, stop current and prevent future channel erosion, and conduct restoration plantings to enhance the degraded forested stream corridor.

Restoration methods that may be employed:

- Potential stormwater pond retrofit on the Somerset South Homeowner Association property to maximize storage, provide water quality using a wetland bottom within the pond, and reduce intensity of water leaving the pond to reduce channel erosion.
- Place woody structures within the perennial stream to reduce channel erosion and protect surrounding forests from continued tree loss.
- Control invasive plant species.
- Conduct restoration planting throughout the floodplain. Trees in poor health may be removed to reduce hazard trees, open light gaps to assist in regeneration, and provide large woody debris.
Somerset – Ceralene Drive to Dansk Court
Smokewood Park,
South of Laurel Street

Overview
This project in Smokewood Park is located on Fairfax County Park Authority property south of Laurel Street and west of Whitacre Road and Olde Creek Elementary School, and potentially includes land owned by the Fairfax Memorial Park. Private properties surround the restoration project area, which includes 2,400 linear feet of stream, regulated floodplain, and a forested stream corridor dominated by mature floodplain tree species. The existing understory vegetation is of sub-optimal quality with invasive plant species. An active sewer line runs adjacent to the stream and crosses once, where an exposed sewer line has been identified. There is a high traffic asphalt and natural surface trail with three pedestrian foot bridges located in the restoration project area.

The perennial stream has downcut and widened due to past increases in stormwater runoff from development throughout the contributing drainage area. The banks along the channel are three (3) to six (6) feet with root depths extending halfway down the bank exposing the bottom of the bank to further erosion. Two concrete outfall ditches discharge into the perennial channel.

Restoration Goals and Methods
This project will focus on protecting existing infrastructure and private properties, stabilizing the eroding stream channel to stop current and prevent future channel erosion, improving floodplain function, habitat for fish and other aquatic organisms, and the health of the forest throughout the stream corridor.

Restoration methods that may be employed:
- Place wood and supplemental rock structures within stream to reduce channel erosion and migration toward private property, increase channel "roughness", and improve habitat for fish and macroinvertebrates. Channel extents may be altered to protect private property and existing sewer infrastructure, and some grading will occur.
- Large wood may be placed in the stream and floodplain on a limited basis to protect banks, improve habitat for fish and other aquatic and terrestrial organisms, increase "roughness", and improve biodiversity and resiliency.
- Convert of concrete channels to natural channels.
- Control invasive plan species.
- Restoration planting throughout the floodplain. Trees in poor health may be removed to reduce hazard trees, open light gaps to assist in regeneration, and provide large woody debris.
Smokewood Park, South of Laurel Street
Smokewood Park, North of Laurel Street

Overview

This project in Smokewood Park is located on Fairfax County Park Authority property north of Laurel Street and west of Whitacre Road. Private properties border the restoration project area to the north, west, and east. The restoration project area includes 1,490 linear feet of stream, a regulated floodplain, and a forested stream corridor dominated by mature mesic floodplain tree species. The existing understory vegetation is of sub-optimal quality with a few invasive plant species. An active sewer line runs adjacent to the stream; however, no exposures have been identified.

The stream is an incised, perennial channel that has downcut and widened due to past increases in stormwater runoff from development throughout the contributing drainage area. The banks along the perennial channel are two (2) to six (6) feet high with shallow root depths and a lack of surface protection, exposing the bank to continued erosion. There are three outfall channels to the perennial stream. One outfall channel enters the perennial stream from Trapp Road. This outfall is highly degraded with an exposed sewer line and bank heights between four (4) and six (6) feet. Erosion of this channel threatens an adjacent home. Another outfall from Lenox Drive was recently stabilized; however, a small repair near the confluence with the perennial stream needs to be addressed within this restoration project area. The third outfall channel comes from Whitacre Road and is a downcut, perennial channel with bank heights between three (3) and four (4) feet. These banks have low root density and depth with very sparse trees along the immediate streambank exposing the banks to continued erosion.

Restoration Goals and Methods

This project will focus on stabilizing the eroding stream and outfall channel to stop current and prevent future channel erosion, improving floodplain function and aquatic habitat, protecting mature trees throughout the riparian corridor to the greatest extent possible, and improving the health of the forest throughout the stream corridor.

Restoration methods that may be employed:

- Place wood and supplemental rock structures within stream to reduce channel erosion and migration toward private property, increase channel "roughness", and improve habitat for fish and macroinvertebrates. Channel extents may be altered to protect private property and existing sewer infrastructure, and some grading will occur.
- Large wood may be placed in the stream and floodplain on a limited basis to protect banks, improve habitat for fish and other aquatic and terrestrial organisms, increase “roughness”, and improve biodiversity and resiliency.
- Access work areas through degraded outfall corridors to the greatest extent possible.
- Restoration planting throughout the floodplain. Trees in poor health may be removed to reduce hazard trees, open light gaps to assist in regeneration, and provide large woody debris.
Smokewood Park,
North of Laurel Street
Holly Park Stormwater Pond

Overview
The Holly Park Stormwater Pond is located behind 4029 Maple Avenue and was constructed in the mid-1990s along with the neighborhood on John Robert Way. Stormwater enters the pond from the northwest from one storm drain ditch. The pond is located on property owned by the Fairfax County Board of Supervisors. The existing pond bottom is wet with small trees and undesirable species like phragmites growing within it. The stream corridor downstream of the pond is in poor condition and located within a stormwater easement. Some repairs are needed in within the pond itself and in the stream channel below the outfall structure.

Restoration Goals and Methods
This project could include improvements to the stormwater pond to increase stormwater detention, reduce erosive flows, and provide additional habitat. Restoration of the eroded stream channel downstream of the pond could also be included. All work will be performed within the stormwater easement or on property owned by Fairfax County and will incorporate the protection of the upland forest community along with restoration and wetland plantings to enhance the overall quality of the stream corridor.

Restoration methods that may be employed:
- Potential stormwater pond retrofit to maximize storage, provide water quality using a wetland bottom within the pond, and reduce the intensity of water leaving the pond to reduce the potential for channel erosion downstream.
- Potential channel restoration to reduce erosion and sediment downstream of the stormwater pond.
- Conduct restoration planting to supplement good quality vegetation and provide additional young trees, shrubs, and wetland species.
Holly Park Stormwater Pond

Biohabitats

Long Branch Central Watershed
Fairfax County, Virginia
Restoration Opportunity:
Holly Park Stormwater Pond

September 2022
Newcombe Stormwater Pond

Overview
The Newcombe Stormwater Pond is located within the open space adjacent to 4027 Maple Avenue. It was constructed in the early 2000s along with the four homes along this section of Maple Avenue. Stormwater enters the pond from the north and northwest from two storm drain networks. The pond is located on property owned by the homeowner association and is maintained by Fairfax County through a stormwater easement. The existing pond bottom is wet and invasive species including phragmites dominate the groundcover. The stream corridor downstream of the pond is on property owned by Fairfax County and is in poor condition. Some repairs are needed in within the pond itself and in the stream channel below the outfall structure.

Restoration Goals and Methods
This project could include improvements to the stormwater pond to increase stormwater detention, reduce erosive flows, and provide additional habitat. Restoration of the eroded stream channel downstream of the pond could also be included. All work will be performed within the stormwater easement or on property owned by Fairfax County. The protection of the upland forest community along with restoration and wetland plantings to enhance the overall quality of the stream corridor will be incorporated into the project.

Restoration methods that may be employed:
- Potential stormwater pond retrofit to maximize storage, provide water quality using a wetland bottom within the pond, and reduce the intensity of water leaving the pond to reduce the potential for channel erosion downstream.
- Potential channel restoration to reduce erosion and sediment downstream of the stormwater pond.
- Conduct restoration planting to supplement good quality vegetation and provide additional young trees, shrubs, and wetland species.
Overview

The Woodland Meadows Court Stormwater Pond is located behind two homes (8808 and 8812) along Woodland Meadows Court. It is an on-line “dry pond” that was constructed in the early 1990s in conjunction with the neighborhood. The pond is located on property owned by the homeowner association but maintained by Fairfax County through an easement. The pond bottom and side slopes are vegetated with turf grass. Two stormwater pipes flow into the pond from the adjacent neighborhood. Additionally, a stream channel flows into the pond from west and continues downstream of the pond. The stream corridor is located entirely on private property until it enters Long Branch Stream Valley Park. Some repairs are needed in the pond and the stream channel downstream of the pond shows signs of erosion.

Restoration Goals and Methods

This project could include improvements to the stormwater pond to increase stormwater detention and reduce erosive flows. All work will be performed within the stormwater easement area and will seek to minimize impacts to private property. Property ownership and infrastructure may prohibit restoration of the stream channel upstream and downstream of the pond.

Restoration methods that may be employed:

- Potential stormwater pond retrofit to maximize storage and reduce the intensity of water leaving the pond to reduce the potential for channel erosion downstream.
- Conduct restoration planting to provide additional desirable shrubs and grasses species.
Woodland Meadows Court Stormwater Pond

Long Branch Central Watershed
Fairfax County, Virginia
Restoration Opportunity:
Woodland Meadows Court Stormwater Pond
September 2022

Existing Conditions
- Aerial Boundary
- National Wetland Inventory
 - Water
 - Existing Stormwater Facility

Existing Infrastructure
- Storm Drain Locate
- Storm Drain
- Sanitary Sewer

Restoration Elements
- Construction Access
- Stockpile
Project Grouping and Phasing for Implementation

- Two sets of groupings are recommended – one for design and one for construction and permitting.
- Nine design groupings bundle adjacent projects so that upstream and downstream influences can be better understood during the design process.
- Fifteen construction groupings consist primarily of stand-alone projects; some have been bundled to reduce overall disturbance and trail interference.
- Design and construction should begin in tributaries and headwaters, and work downstream.
- Ponds should be retrofitted prior to downstream reaches being restored.
- Length of construction (in months) has been estimated for each project.
- Estimated length of the design process and overall implementation phasing schedule will be developed once Design Team is in concurrence with proposed design and construction groupings.

For more information, see Attachment E: Long Branch Central Watershed Summary of Project Groupings, Costs, Construction Length and Potential Sediment Reduction
Project Grouping for Design

DG-01 Willow Woods Park South of Braeburn Drive
 Ilda Pool at Braeburn Drive
DG-02 Olde Forge Park
DG-03 Kristin Lane to Rutherford Park
DG-04 Newcombe Stormwater Pond
 Holly Park Stormwater Pond
DG-05A Smokewood Park, South of Laurel Street
 Smokewood Park, North of Laurel Street
DG-05B Dansk Court to Flintridge Court
 Somerset – Ceralene Drive to Dansk Court
DG-06 Pickett Road to Tara Drive
 Olde Creek Elementary School to Pickett Road
DG-07 Olley Lane Regional Stormwater Pond near Surrey Square Park
DG-08 Guinea Road to Tabard Place
 Rutherford Park
 El James Drive to Rutherford Park
DG-09A Tabard Place to Woodland Way
DG-09B Canterbury Woods Park – Cockney Court to Wakefield Chapel Road
 Long Branch Stream Valley Park – Dora Court to Cockney Court
 Woodland Way to Dora Court
Project Grouping for Design

DG-01 Willow Woods Park South of Braeburn Drive
 Ilda Pool at Braeburn Drive

DG-02 Olde Forge Park

DG-03 Kristin Lane to Rutherford Park

DG-04 Newcombe Stormwater Pond
 Holly Park Stormwater Pond

DG-05A Smokewood Park, South of Laurel Street
 Smokewood Park, North of Laurel Street

DG-05B Dansk Court to Flintridge Court
 Somerset – Ceralene Drive to Dansk Court

DG-06 Pickett Road to Tara Drive
 Olde Creek Elementary School to Pickett Road

DG-07 Olley Lane Regional Stormwater Pond near Surrey Square Park

DG-08 Guinea Road to Tabard Place
 Rutherford Park
 El James Drive to Rutherford Park

DG-09A Tabard Place to Woodland Way

DG-09B Canterbury Woods Park – Cockney Court to Wakefield Chapel Road
 Long Branch Stream Valley Park – Dora Court to Cockney Court
 Woodland Way to Dora Court
Project Grouping for Design

DG-01 Willow Woods Park South of Braeburn Drive
 Ilda Pool at Braeburn Drive

DG-02 Olde Forge Park

DG-03 Kristin Lane to Rutherford Park

DG-04 Newcombe Stormwater Pond
 Holly Park Stormwater Pond

DG-05A Smokewood Park, South of Laurel Street
 Smokewood Park, North of Laurel Street

DG-05B Dansk Court to Flintridge Court
 Somerset – Ceralene Drive to Dansk Court

DG-06 Pickett Road to Tara Drive
 Olde Creek Elementary School to Pickett Road

DG-07 Olley Lane Regional Stormwater Pond near Surrey Square Park

DG-08 Guinea Road to Tabard Place
 Rutherford Park
 El James Drive to Rutherford Park

DG-09A Tabard Place to Woodland Way

DG-09B Canterbury Woods Park – Cockney Court to Wakefield Chapel Road
 Long Branch Stream Valley Park – Dora Court to Cockney Court
 Woodland Way to Dora Court
Project Grouping for Design

DG-01 Willow Woods Park South of Braeburn Drive
Ilda Pool at Braeburn Drive

DG-02 Olde Forge Park

DG-03 **Kristin Lane to Rutherford Park**

DG-04 Newcombe Stormwater Pond
Holly Park Stormwater Pond

DG-05A Smokewood Park, South of Laurel Street
Smokewood Park, North of Laurel Street

DG-05B Dansk Court to Flintridge Court
Somerset – Ceralene Drive to Dansk Court

DG-06 Pickett Road to Tara Drive
Olde Creek Elementary School to Pickett Road

DG-07 Olley Lane Regional Stormwater Pond near Surrey Square Park

DG-08 Guinea Road to Tabard Place
Rutherford Park
El James Drive to Rutherford Park

DG-09A Tabard Place to Woodland Way

DG-09B Canterbury Woods Park – Cockney Court to Wakefield Chapel Road
Long Branch Stream Valley Park – Dora Court to Cockney Court
Woodland Way to Dora Court
Project Grouping for Design

DG-01 Willow Woods Park South of Braeburn Drive
 Ilda Pool at Braeburn Drive
DG-02 Olde Forge Park
DG-03 Kristin Lane to Rutherford Park
DG-04 Newcombe Stormwater Pond
 Holly Park Stormwater Pond
DG-05A Smokewood Park, South of Laurel Street
 Smokewood Park, North of Laurel Street
DG-05B Dansk Court to Flintridge Court
 Somerset – Ceralene Drive to Dansk Court
DG-06 Pickett Road to Tara Drive
 Olde Creek Elementary School to Pickett Road
DG-07 Olley Lane Regional Stormwater Pond near Surrey Square Park
DG-08 Guinea Road to Tabard Place
 Rutherford Park
 El James Drive to Rutherford Park
DG-09A Tabard Place to Woodland Way
DG-09B Canterbury Woods Park – Cockney Court to Wakefield Chapel Road
 Long Branch Stream Valley Park – Dora Court to Cockney Court
 Woodland Way to Dora Court
Project Grouping for Design

DG-01 Willow Woods Park South of Braeburn Drive
 Ilda Pool at Braeburn Drive
DG-02 Olde Forge Park
DG-03 Kristin Lane to Rutherford Park
DG-04 Newcombe Stormwater Pond
 Holly Park Stormwater Pond
DG-05A Smokewood Park, South of Laurel Street
 Smokewood Park, North of Laurel Street
DG-05B Dansk Court to Flintridge Court
 Somerset – Ceralene Drive to Dansk Court
DG-06 Pickett Road to Tara Drive
 Olde Creek Elementary School to Pickett Road
DG-07 Olley Lane Regional Stormwater Pond near Surrey Square Park
DG-08 Guinea Road to Tabard Place
 Rutherford Park
 El James Drive to Rutherford Park
DG-09A Tabard Place to Woodland Way
DG-09B Canterbury Woods Park – Cockney Court to Wakefield Chapel Road
 Long Branch Stream Valley Park – Dora Court to Cockney Court
 Woodland Way to Dora Court
Project Grouping for Design

DG-01 Willow Woods Park South of Braeburn Drive
 Ilda Pool at Braeburn Drive
DG-02 Olde Forge Park
DG-03 Kristin Lane to Rutherford Park
DG-04 Newcombe Stormwater Pond
 Holly Park Stormwater Pond
DG-05A Smokewood Park, South of Laurel Street
 Smokewood Park, North of Laurel Street
DG-05B Dansk Court to Flintridge Court
 Somerset – Ceralene Drive to Dansk Court
DG-06 Pickett Road to Tara Drive
 Olde Creek Elementary School to Pickett Road
DG-07 Olley Lane Regional Stormwater Pond near Surrey Square Park
DG-08 Guinea Road to Tabard Place
 Rutherford Park
 El James Drive to Rutherford Park
DG-09A Tabard Place to Woodland Way
DG-09B Canterbury Woods Park – Cockney Court to Wakefield Chapel Road
 Long Branch Stream Valley Park – Dora Court to Cockney Court
 Woodland Way to Dora Court
Project Grouping for Design

DG-01 Willow Woods Park South of Braeburn Drive
 Ilda Pool at Braeburn Drive
DG-02 Olde Forge Park
DG-03 Kristin Lane to Rutherford Park
DG-04 Newcombe Stormwater Pond
 Holly Park Stormwater Pond
DG-05A Smokewood Park, South of Laurel Street
 Smokewood Park, North of Laurel Street
DG-05B Dansk Court to Flintridge Court
 Somerset – Ceralene Drive to Dansk Court
DG-06 Pickett Road to Tara Drive
 Olde Creek Elementary School to Pickett Road
DG-07 **Olley Lane Regional Stormwater Pond near Surrey Square Park**
DG-08 Guinea Road to Tabard Place
 Rutherford Park
 El James Drive to Rutherford Park
DG-09A Tabard Place to Woodland Way
DG-09B Canterbury Woods Park – Cockney Court to Wakefield Chapel Road
 Long Branch Stream Valley Park – Dora Court to Cockney Court
 Woodland Way to Dora Court
Project Grouping for Design

DG-01 Willow Woods Park South of Braeburn Drive
 Ilda Pool at Braeburn Drive
DG-02 Olde Forge Park
DG-03 Kristin Lane to Rutherford Park
DG-04 Newcombe Stormwater Pond
 Holly Park Stormwater Pond
DG-05A Smokewood Park, South of Laurel Street
 Smokewood Park, North of Laurel Street
DG-05B Dansk Court to Flintridge Court
 Somerset – Ceralene Drive to Dansk Court
DG-06 Pickett Road to Tara Drive
 Olde Creek Elementary School to Pickett Road
DG-07 Olley Lane Regional Stormwater Pond near Surrey Square Park
DG-08 Guinea Road to Tabard Place
 Rutherford Park
 El James Drive to Rutherford Park
DG-09A Tabard Place to Woodland Way
DG-09B Canterbury Woods Park – Cockney Court to Wakefield Chapel Road
 Long Branch Stream Valley Park – Dora Court to Cockney Court
 Woodland Way to Dora Court
Project Grouping for Design

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DG-01</td>
<td>Willow Woods Park South of Braeburn Drive
Ilda Pool at Braeburn Drive</td>
</tr>
<tr>
<td>DG-02</td>
<td>Olde Forge Park</td>
</tr>
<tr>
<td>DG-03</td>
<td>Kristin Lane to Rutherford Park</td>
</tr>
<tr>
<td>DG-04</td>
<td>Newcombe Stormwater Pond
Holly Park Stormwater Pond</td>
</tr>
<tr>
<td>DG-05A</td>
<td>Smokewood Park, South of Laurel Street
Smokewood Park, North of Laurel Street</td>
</tr>
<tr>
<td>DG-05B</td>
<td>Dansk Court to Flintridge Court
Somerset – Ceralene Drive to Dansk Court</td>
</tr>
<tr>
<td>DG-06</td>
<td>Pickett Road to Tara Drive
Olde Creek Elementary School to Pickett Road</td>
</tr>
<tr>
<td>DG-07</td>
<td>Olley Lane Regional Stormwater Pond near Surrey Square Park</td>
</tr>
<tr>
<td>DG-08</td>
<td>Guinea Road to Tabard Place
Rutherford Park
El James Drive to Rutherford Park</td>
</tr>
<tr>
<td>DG-09A</td>
<td>Tabard Place to Woodland Way</td>
</tr>
<tr>
<td>DG-09B</td>
<td>Canterbury Woods Park – Cockney Court to Wakefield Chapel Road
Long Branch Stream Valley Park – Dora Court to Cockney Court
Woodland Way to Dora Court</td>
</tr>
</tbody>
</table>
Project Grouping for Design

<table>
<thead>
<tr>
<th>Design Grouping</th>
<th>Project Name</th>
<th>Stream Length (LF)</th>
<th>Design Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>DG-01</td>
<td>Ilda Pool at Braeburn Drive Willow Woods Park South of Braeburn Drive</td>
<td>2,262</td>
<td>$328,569</td>
</tr>
<tr>
<td>DG-02</td>
<td>Olde Forge Park</td>
<td>2,184</td>
<td>$530,833</td>
</tr>
<tr>
<td>DG-03</td>
<td>Kristin Lane to Rutherford Park</td>
<td>2,262</td>
<td>$402,365</td>
</tr>
<tr>
<td>DG-04</td>
<td>Newcombe Stormwater Pond Holly Park Stormwater Pond</td>
<td>N/A</td>
<td>$370,000</td>
</tr>
<tr>
<td>DG-05A</td>
<td>Smokewood Park, North of Laurel Street Smokewood Park, South of Laurel Street</td>
<td>3,894</td>
<td>$457,434</td>
</tr>
<tr>
<td>DG-05B</td>
<td>Somerset – Ceralene Drive to Dansk Court Dansk Court to Flintridge Court</td>
<td>3,069</td>
<td>$559,409</td>
</tr>
<tr>
<td>DG-06</td>
<td>Olde Creek Elementary School to Pickett Road Pickett Road to Tara Drive</td>
<td>5,848</td>
<td>$1,108,937</td>
</tr>
<tr>
<td>DG-07</td>
<td>Olley Lane Regional Stormwater Pond near Surrey Square Park</td>
<td>N/A</td>
<td>$185,000</td>
</tr>
<tr>
<td>DG-08</td>
<td>Guinea Road to Tabard Place Rutherford Park El James Drive to Rutherford Park</td>
<td>3,697</td>
<td>$714,428</td>
</tr>
<tr>
<td>DG-09A</td>
<td>Tabard Place to Woodland Way</td>
<td>3,941</td>
<td>$835,466</td>
</tr>
<tr>
<td>DG-09B</td>
<td>Canterbury Woods Park – Cockney Court to Wakefield Chapel Road Long Branch Stream Valley Park – Dora Court to Cockney Court Woodland Way to Dora Court</td>
<td>7,601</td>
<td>$1,969,056</td>
</tr>
</tbody>
</table>
Project Grouping for Permitting + Construction

CG-01A Ilda Pool at Braeburn Drive
CG-01B Willow Woods Park South of Braeburn Drive
CG-02 Olde Forge Park
CG-03 Kristin Lane to Rutherford Park
CG-04 Newcombe Stormwater Pond
 Holly Park Stormwater Pond
CG-05 Smokewood Park, North of Laurel Street
CG-06 Somerset – Ceralene Drive to Dansk Court
CG-07A Smokewood Park, South of Laurel Street
CG-07B Dansk Court to Flintridge Court
CG-08 Olde Creek Elementary School to Pickett Road
CG-09 Pickett Road to Tara Drive
CG-10 Olley Lane Regional Stormwater Pond near Surrey Square Park
CG-11 Rutherford Park
 El James Drive to Rutherford Park
CG-12 Guinea Road to Tabard Place
CG-13 Tabard Place to Woodland Way
CG-14 Woodland Way to Dora Court
 Long Branch Stream Valley Park – Dora Ct to Cockney Ct – West
CG-15 Long Branch Stream Valley Park – Dora Ct to Cockney Ct – East
 Canterbury Woods Park – Cockney Ct to Wakefield Chapel Rd
Project Grouping for Permitting + Construction

CG-01A Ilda Pool at Braeburn Drive
CG-01B Willow Woods Park South of Braeburn Drive
Projects can be grouped or constructed independently

<table>
<thead>
<tr>
<th></th>
<th>Ilda Pool at Braeburn Drive</th>
<th>Willow Woods Park South of Braeburn Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream Length (LF)</td>
<td>758</td>
<td>1,504</td>
</tr>
<tr>
<td>CA/CO Services</td>
<td>$37,643</td>
<td>$92,377</td>
</tr>
<tr>
<td>Construction Costs</td>
<td>$352,550</td>
<td>$961,726</td>
</tr>
<tr>
<td>Construction Contingency</td>
<td>$35,255</td>
<td>$96,173</td>
</tr>
<tr>
<td>Total Construction Cost</td>
<td>$387,805</td>
<td>$1,057,899</td>
</tr>
<tr>
<td>Total Construction Cost / LF</td>
<td>$512</td>
<td>$703</td>
</tr>
<tr>
<td>Active Construction (months)</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Total Construction (months)</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Sediment Reduction Estimate (tons/yr)</td>
<td>WITH Delivery Ratio 7</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>W/OUT Delivery Ratio 39</td>
<td>147</td>
</tr>
</tbody>
</table>
Project Grouping for Permitting + Construction

CG-02 Olde Forge Park

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream Length (LF)</td>
<td>2,184</td>
</tr>
<tr>
<td>CA/CO Services</td>
<td>$128,424</td>
</tr>
<tr>
<td>Construction Costs</td>
<td>$1,516,665</td>
</tr>
<tr>
<td>Construction Contingency</td>
<td>$227,500</td>
</tr>
<tr>
<td>Total Construction Cost</td>
<td>$1,744,164</td>
</tr>
<tr>
<td>Total Construction Cost / LF</td>
<td>$799</td>
</tr>
<tr>
<td>Active Construction (months)</td>
<td>4</td>
</tr>
<tr>
<td>Total Construction (months)</td>
<td>10</td>
</tr>
<tr>
<td>Sediment Reduction Estimate (tons/yr)</td>
<td></td>
</tr>
<tr>
<td>WITH Delivery Ratio</td>
<td>33</td>
</tr>
<tr>
<td>W/OUT Delivery Ratio</td>
<td>184</td>
</tr>
</tbody>
</table>
Project Grouping for Permitting + Construction

CG-03 Kristin Lane to Rutherford Park

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream Length (LF)</td>
<td>2,262</td>
</tr>
<tr>
<td>CA/CO Services</td>
<td>$134,901</td>
</tr>
<tr>
<td>Construction Costs</td>
<td>$1,490,241</td>
</tr>
<tr>
<td>Construction Contingency</td>
<td>$193,731</td>
</tr>
<tr>
<td>Total Construction Cost</td>
<td>$1,683,972</td>
</tr>
<tr>
<td>Total Construction Cost / LF</td>
<td>$744</td>
</tr>
<tr>
<td>Active Construction (months)</td>
<td>4</td>
</tr>
<tr>
<td>Total Construction (months)</td>
<td>10</td>
</tr>
<tr>
<td>Sediment Reduction Estimate (tons/yr)</td>
<td></td>
</tr>
<tr>
<td>WITH Delivery Ratio</td>
<td>20</td>
</tr>
<tr>
<td>W/OUT Delivery Ratio</td>
<td>108</td>
</tr>
</tbody>
</table>

WITH Delivery Ratio

W/OUT Delivery Ratio
Project Grouping for Permitting + Construction

| CG-04 | Newcombe Stormwater Pond
Holly Park Stormwater Pond |
|-------|---------------------------|

<table>
<thead>
<tr>
<th>CA/CO Services</th>
<th>$117,734</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Costs</td>
<td>$398,512</td>
</tr>
<tr>
<td>Construction Contingency</td>
<td>$79,702</td>
</tr>
<tr>
<td>Total Construction Cost</td>
<td>$478,215</td>
</tr>
<tr>
<td>Total Construction Cost / LF</td>
<td>N/A</td>
</tr>
<tr>
<td>Active Construction (months)</td>
<td>3</td>
</tr>
<tr>
<td>Total Construction (months)</td>
<td>8</td>
</tr>
</tbody>
</table>
Project Grouping for Permitting + Construction

CG-05 Smokewood Park, North of Laurel Street

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream Length (LF)</td>
<td>1,493</td>
</tr>
<tr>
<td>CA/CO Services</td>
<td>$66,386</td>
</tr>
<tr>
<td>Construction Costs</td>
<td>$640,557</td>
</tr>
<tr>
<td>Construction Contingency</td>
<td>$64,056</td>
</tr>
<tr>
<td>Total Construction Cost</td>
<td>$704,613</td>
</tr>
<tr>
<td>Total Construction Cost / LF</td>
<td>$472</td>
</tr>
<tr>
<td>Active Construction (months)</td>
<td>2</td>
</tr>
<tr>
<td>Total Construction (months)</td>
<td>5</td>
</tr>
<tr>
<td>Sediment Reduction Estimate (tons/yr)</td>
<td></td>
</tr>
<tr>
<td>WITH Delivery Ratio</td>
<td>23</td>
</tr>
<tr>
<td>W/OUT Delivery Ratio</td>
<td>128</td>
</tr>
</tbody>
</table>
Project Grouping for Permitting + Construction

CG-06 Somerset – Ceralene Drive to Dansk Court

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream Length (LF)</td>
<td>1,232</td>
</tr>
<tr>
<td>CA/CO Services</td>
<td>$167,737</td>
</tr>
<tr>
<td>Construction Costs</td>
<td>$1,044,301</td>
</tr>
<tr>
<td>Construction Contingency</td>
<td>$156,645</td>
</tr>
<tr>
<td>Total Construction Cost</td>
<td>$1,200,947</td>
</tr>
<tr>
<td>Total Construction Cost / LF</td>
<td>$975</td>
</tr>
<tr>
<td>Active Construction (months)</td>
<td>5</td>
</tr>
<tr>
<td>Total Construction (months)</td>
<td>11</td>
</tr>
<tr>
<td>Sediment Reduction Estimate (tons/yr)</td>
<td></td>
</tr>
<tr>
<td>WITH Delivery Ratio</td>
<td>17</td>
</tr>
<tr>
<td>W/O DELIVERY Ratio</td>
<td>94</td>
</tr>
</tbody>
</table>
Project Grouping for Permitting + Construction

CG-07A Smokewood Park, South of Laurel Street
CG-07B Dansk Court to Flintridge Court

Projects can be grouped or constructed independently

<table>
<thead>
<tr>
<th></th>
<th>Smokewood Park, South of Laurel Street</th>
<th>Dansk Court to Flintridge Court</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream Length (LF)</td>
<td>2,401</td>
<td>1,837</td>
</tr>
<tr>
<td>CA/CO Services</td>
<td>$101,895</td>
<td>$79,838</td>
</tr>
<tr>
<td>Construction Costs</td>
<td>$1,189,180</td>
<td>$775,614</td>
</tr>
<tr>
<td>Construction Contingency</td>
<td>$118,918</td>
<td>$77,561</td>
</tr>
<tr>
<td>Total Construction Cost</td>
<td>$1,308,098</td>
<td>$853,176</td>
</tr>
<tr>
<td>Total Construction Cost / LF</td>
<td>$545</td>
<td>$464</td>
</tr>
<tr>
<td>Active Construction (months)</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Total Construction (months)</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Sediment Reduction Estimate (tons/yr)</td>
<td>WITH Delivery Ratio 42</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>W/OJT Delivery Ratio</td>
<td>234</td>
</tr>
</tbody>
</table>
Project Grouping for Permitting + Construction

CG-08 Olde Creek Elementary School to Pickett Road

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream Length (LF)</td>
<td>3,285</td>
</tr>
<tr>
<td>CA/CO Services</td>
<td>$204,163</td>
</tr>
<tr>
<td>Construction Costs</td>
<td>$2,812,402</td>
</tr>
<tr>
<td>Construction Contingency</td>
<td>$281,240</td>
</tr>
<tr>
<td>Total Construction Cost</td>
<td>$3,093,642</td>
</tr>
<tr>
<td>Total Construction Cost / LF</td>
<td>$942</td>
</tr>
<tr>
<td>Active Construction (months)</td>
<td>5</td>
</tr>
<tr>
<td>Total Construction (months)</td>
<td>13</td>
</tr>
<tr>
<td>Sediment Reduction Estimate (tons/yr) WITH Delivery Ratio</td>
<td>45</td>
</tr>
<tr>
<td>Sediment Reduction Estimate (tons/yr) W/OUT Delivery Ratio</td>
<td>248</td>
</tr>
</tbody>
</table>
Project Grouping for Permitting + Construction

CG-09 Pickett Road to Tara Drive

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream Length (LF)</td>
<td>2,563</td>
</tr>
<tr>
<td>CA/CO Services</td>
<td>$93,710</td>
</tr>
<tr>
<td>Construction Costs</td>
<td>$1,623,346</td>
</tr>
<tr>
<td>Construction Contingency</td>
<td>$162,335</td>
</tr>
<tr>
<td>Total Construction Cost</td>
<td>$1,785,681</td>
</tr>
<tr>
<td>Total Construction Cost / LF</td>
<td>$697</td>
</tr>
<tr>
<td>Active Construction (months)</td>
<td>2</td>
</tr>
<tr>
<td>Total Construction (months)</td>
<td>2</td>
</tr>
<tr>
<td>Sediment Reduction Estimate (tons/yr)</td>
<td></td>
</tr>
<tr>
<td>WITH Delivery Ratio</td>
<td>28</td>
</tr>
<tr>
<td>W/OUT Delivery Ratio</td>
<td>156</td>
</tr>
</tbody>
</table>
Project Grouping for Permitting + Construction

CG-10 Olley Lane Regional Stormwater Pond near Surrey Square Park

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA/CO Services</td>
<td>$74,092</td>
</tr>
<tr>
<td>Construction Costs</td>
<td>$323,691</td>
</tr>
<tr>
<td>Construction Contingency</td>
<td>$64,738</td>
</tr>
<tr>
<td>Total Construction Cost</td>
<td>$388,430</td>
</tr>
<tr>
<td>Total Construction Cost / LF</td>
<td>N/A</td>
</tr>
<tr>
<td>Active Construction (months)</td>
<td>2</td>
</tr>
<tr>
<td>Total Construction (months)</td>
<td>5</td>
</tr>
</tbody>
</table>
Project Grouping for Permitting + Construction

CG-11 Rutherford Park
 El James Drive to Rutherford Park

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream Length (LF)</td>
<td>2,075</td>
</tr>
<tr>
<td>CA/CO Services</td>
<td>$146,040</td>
</tr>
<tr>
<td>Construction Costs</td>
<td>$1,399,723</td>
</tr>
<tr>
<td>Construction Contingency</td>
<td>$139,972</td>
</tr>
<tr>
<td>Total Construction Cost</td>
<td>$1,539,695</td>
</tr>
<tr>
<td>Total Construction Cost / LF</td>
<td>$742</td>
</tr>
<tr>
<td>Active Construction (months)</td>
<td>4</td>
</tr>
<tr>
<td>Total Construction (months)</td>
<td>10</td>
</tr>
<tr>
<td>Sediment Reduction Estimate</td>
<td></td>
</tr>
<tr>
<td>WITH Delivery Ratio</td>
<td>34</td>
</tr>
<tr>
<td>W/OUT Delivery Ratio</td>
<td>188</td>
</tr>
</tbody>
</table>
Project Grouping for Permitting + Construction

CG-12 Guinea Road to Tabard Place

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream Length (LF)</td>
<td>1,622</td>
</tr>
<tr>
<td>CA/CO Services</td>
<td>$184,227</td>
</tr>
<tr>
<td>Construction Costs</td>
<td>$1,457,988</td>
</tr>
<tr>
<td>Construction Contingency</td>
<td>$145,799</td>
</tr>
<tr>
<td>Total Construction Cost</td>
<td>$1,603,787</td>
</tr>
<tr>
<td>Total Construction Cost / LF</td>
<td>$989</td>
</tr>
<tr>
<td>Active Construction (months)</td>
<td>5</td>
</tr>
<tr>
<td>Total Construction (months)</td>
<td>9</td>
</tr>
<tr>
<td>Sediment Reduction Estimate (tons/yr)</td>
<td></td>
</tr>
<tr>
<td>WITH Delivery Ratio</td>
<td>27</td>
</tr>
<tr>
<td>W/OUT Delivery Ratio</td>
<td>150</td>
</tr>
</tbody>
</table>
LONG BRANCH CENTRAL WATERSHED IMPLEMENTATION WORK PLAN

Project Grouping for Permitting + Construction

CG-13 Tabard Place to Woodland Way

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream Length (LF)</td>
<td>3,941</td>
</tr>
<tr>
<td>CA/CO Services</td>
<td>$243,336</td>
</tr>
<tr>
<td>Construction Costs</td>
<td>$3,341,866</td>
</tr>
<tr>
<td>Construction Contingency</td>
<td>$334,187</td>
</tr>
<tr>
<td>Total Construction Cost</td>
<td>$3,676,053</td>
</tr>
<tr>
<td>Total Construction Cost / LF</td>
<td>$933</td>
</tr>
<tr>
<td>Active Construction (months)</td>
<td>6</td>
</tr>
<tr>
<td>Total Construction (months)</td>
<td>3</td>
</tr>
<tr>
<td>Sediment Reduction Estimate</td>
<td></td>
</tr>
<tr>
<td>WITH Delivery Ratio</td>
<td>48</td>
</tr>
<tr>
<td>W/OUT Delivery Ratio</td>
<td>266</td>
</tr>
</tbody>
</table>
Project Grouping for Permitting + Construction

CG-14 Woodland Way to Dora Court
Long Branch Stream Valley Park – Dora Ct to Cockney Ct – West

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream Length (LF)</td>
<td>3,434</td>
</tr>
<tr>
<td>CA/CO Services</td>
<td>$301,037</td>
</tr>
<tr>
<td>Construction Costs</td>
<td>$3,573,287</td>
</tr>
<tr>
<td>Construction Contingency</td>
<td>$357,329</td>
</tr>
<tr>
<td>Total Construction Cost</td>
<td>$3,930,616</td>
</tr>
<tr>
<td>Total Construction Cost / LF</td>
<td>$1,145</td>
</tr>
<tr>
<td>Active Construction (months)</td>
<td>8</td>
</tr>
<tr>
<td>Total Construction (months)</td>
<td>17</td>
</tr>
<tr>
<td>Sediment Reduction Estimate (tons/yr)</td>
<td>WITH Delivery Ratio 53</td>
</tr>
<tr>
<td></td>
<td>W/OUT Delivery Ratio 292</td>
</tr>
</tbody>
</table>
Project Grouping for Permitting + Construction

CG-15 Long Branch Stream Valley Park – Dora Ct to Cockney Ct – East Canterbury Woods Park – Cockney Ct to Wakefield Chapel Rd

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream Length (LF)</td>
<td>4,168</td>
</tr>
<tr>
<td>CA/CO Services</td>
<td>$362,826</td>
</tr>
<tr>
<td>Construction Costs</td>
<td>$4,302,936</td>
</tr>
<tr>
<td>Construction Contingency</td>
<td>$430,294</td>
</tr>
<tr>
<td>Total Construction Cost</td>
<td>$4,733,230</td>
</tr>
<tr>
<td>Total Construction Cost / LF</td>
<td>$1,136</td>
</tr>
<tr>
<td>Active Construction (months)</td>
<td>10</td>
</tr>
<tr>
<td>Total Construction (months)</td>
<td>20</td>
</tr>
<tr>
<td>Sediment Reduction Estimate (tons/yr) WITH Delivery Ratio</td>
<td>69</td>
</tr>
<tr>
<td>Sediment Reduction Estimate (tons/yr) W/OUT Delivery Ratio</td>
<td>384</td>
</tr>
</tbody>
</table>
Project Grouping for Permitting + Construction

<table>
<thead>
<tr>
<th>Permitting + Construction Grouping</th>
<th>Long Name</th>
<th>Stream Length (LF)</th>
<th>CA/CO Services</th>
<th>Construction Costs</th>
<th>Construction Contingency</th>
<th>Total Construction Cost</th>
<th>Total Construction Cost / Linear Foot</th>
<th>Active Construction (months)</th>
<th>Total Construction Duration (months)</th>
<th>Preliminary Sediment Load Reduction Estimate (tons/yr)</th>
<th>WITH Delivery Ratio</th>
<th>W/OUT Delivery Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG-01A</td>
<td>Ilda Pool at Braeburn Drive</td>
<td>758</td>
<td>$37,643</td>
<td>$352,550</td>
<td>$35,255</td>
<td>$387,805</td>
<td>$512</td>
<td>1</td>
<td>3</td>
<td>199</td>
<td>7</td>
<td>39</td>
</tr>
<tr>
<td>CG-01B</td>
<td>Willow Woods Park South of Braeburn Drive</td>
<td>1,504</td>
<td>$92,377</td>
<td>$961,726</td>
<td>$96,173</td>
<td>$1,057,899</td>
<td>$703</td>
<td>3</td>
<td>6</td>
<td>1,018</td>
<td>27</td>
<td>147</td>
</tr>
<tr>
<td>CG-02</td>
<td>Olde Forge Park</td>
<td>2,184</td>
<td>$128,424</td>
<td>$1,516,665</td>
<td>$227,500</td>
<td>$1,744,164</td>
<td>$799</td>
<td>4</td>
<td>10</td>
<td>274</td>
<td>33</td>
<td>184</td>
</tr>
<tr>
<td>CG-03</td>
<td>Kristin Lane to Rutherford Park</td>
<td>2,262</td>
<td>$134,901</td>
<td>$1,490,241</td>
<td>$193,731</td>
<td>$1,683,972</td>
<td>$744</td>
<td>4</td>
<td>10</td>
<td>178</td>
<td>20</td>
<td>108</td>
</tr>
<tr>
<td>CG-04</td>
<td>Newcombe Stormwater Pond</td>
<td>N/A</td>
<td>$117,734</td>
<td>$398,512</td>
<td>$79,702</td>
<td>$478,215</td>
<td>N/A</td>
<td>3</td>
<td>8</td>
<td>223</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CG-05</td>
<td>Smokewood Park, North of Laurel Street</td>
<td>1,493</td>
<td>$66,386</td>
<td>$640,557</td>
<td>$64,056</td>
<td>$704,613</td>
<td>$472</td>
<td>2</td>
<td>5</td>
<td>238</td>
<td>23</td>
<td>128</td>
</tr>
<tr>
<td>CG-06</td>
<td>Somerset – Ceralene Drive to Dansk Court</td>
<td>1,232</td>
<td>$167,737</td>
<td>$1,044,301</td>
<td>$156,645</td>
<td>$1,200,947</td>
<td>$975</td>
<td>5</td>
<td>11</td>
<td>175</td>
<td>17</td>
<td>94</td>
</tr>
<tr>
<td>CG-07A</td>
<td>Smokewood Park, South of Laurel Street</td>
<td>2,401</td>
<td>$101,895</td>
<td>$1,189,180</td>
<td>$118,918</td>
<td>$1,308,098</td>
<td>$545</td>
<td>3</td>
<td>8</td>
<td>172</td>
<td>42</td>
<td>234</td>
</tr>
<tr>
<td>CG-07B</td>
<td>Dansk Court to Flintridge Court</td>
<td>1,837</td>
<td>$79,838</td>
<td>$775,614</td>
<td>$77,561</td>
<td>$853,176</td>
<td>$464</td>
<td>2</td>
<td>6</td>
<td>45</td>
<td>18</td>
<td>98</td>
</tr>
<tr>
<td>CG-08</td>
<td>Olde Creek Elementary School to Pickett Road</td>
<td>3,285</td>
<td>$204,163</td>
<td>$2,812,402</td>
<td>$281,240</td>
<td>$3,093,642</td>
<td>$942</td>
<td>5</td>
<td>13</td>
<td>248</td>
<td>45</td>
<td>248</td>
</tr>
<tr>
<td>CG-09</td>
<td>Pickett Road to Tara Drive</td>
<td>2,563</td>
<td>$93,710</td>
<td>$1,623,346</td>
<td>$162,335</td>
<td>$1,785,681</td>
<td>$697</td>
<td>2</td>
<td>2</td>
<td>28</td>
<td>22</td>
<td>156</td>
</tr>
<tr>
<td>CG-10</td>
<td>Olley Lane Regional Stormwater Pond near Surrey Square Park</td>
<td>N/A</td>
<td>$74,092</td>
<td>$323,691</td>
<td>$64,738</td>
<td>$388,430</td>
<td>N/A</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CG-11</td>
<td>Rutherford Park</td>
<td>2,075</td>
<td>$146,040</td>
<td>$1,395,723</td>
<td>$139,972</td>
<td>$1,539,695</td>
<td>$742</td>
<td>4</td>
<td>10</td>
<td>34</td>
<td>34</td>
<td>188</td>
</tr>
<tr>
<td>CG-12</td>
<td>Guinea Road to Tabard Place</td>
<td>1,622</td>
<td>$184,227</td>
<td>$1,457,988</td>
<td>$145,799</td>
<td>$1,603,787</td>
<td>$989</td>
<td>5</td>
<td>9</td>
<td>27</td>
<td>9</td>
<td>150</td>
</tr>
<tr>
<td>CG-13</td>
<td>Tabard Place to Woodland Way</td>
<td>3,941</td>
<td>$243,336</td>
<td>$3,341,866</td>
<td>$334,187</td>
<td>$3,676,053</td>
<td>$933</td>
<td>6</td>
<td>3</td>
<td>48</td>
<td>3</td>
<td>266</td>
</tr>
<tr>
<td>CG-14</td>
<td>Woodland Way to Dora Court</td>
<td>3,434</td>
<td>$301,037</td>
<td>$3,573,287</td>
<td>$357,329</td>
<td>$3,930,616</td>
<td>$1,145</td>
<td>8</td>
<td>17</td>
<td>53</td>
<td>53</td>
<td>292</td>
</tr>
<tr>
<td>CG-15</td>
<td>Long Branch Stream Valley Park – Dora Court to Cockney Court – West</td>
<td>4,168</td>
<td>$362,826</td>
<td>$4,302,936</td>
<td>$430,294</td>
<td>$4,733,230</td>
<td>$1,136</td>
<td>10</td>
<td>20</td>
<td>69</td>
<td>20</td>
<td>384</td>
</tr>
</tbody>
</table>
Watershed Monitoring – Before, During and After Construction

Watershed-wide monitoring is in progress by Fairfax County, USGS and Biohabitats

Monitoring parameters and purpose are aligned with the Stream Functions Pyramid and the Fairfax Ecological Recovery Wheel

<table>
<thead>
<tr>
<th>Monitoring Parameter</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Monitoring/Transect</td>
<td>Water level (GPS/USGS)</td>
</tr>
<tr>
<td>Water Quality (USGS)</td>
<td>Conduct water quality monitoring to determine water quality and discharge.</td>
</tr>
<tr>
<td>Groundwater Level</td>
<td>Conduct groundwater monitoring to determine water levels in the stream channel.</td>
</tr>
<tr>
<td>Rain Gauge</td>
<td>Monitor rainfall (USGS) to help understand rainfall patterns.</td>
</tr>
<tr>
<td>Time-lapse photography</td>
<td>Document stream conditions during the course of the stream's hydrography.</td>
</tr>
<tr>
<td>Video (Fairfax)</td>
<td>Document stream conditions during the course of the stream's hydrography.</td>
</tr>
<tr>
<td>Bank Erosion</td>
<td>Document bank erosion rates.</td>
</tr>
<tr>
<td>Streambank Cutoff</td>
<td>Demonstrate the efficacy of stream bank cutoff measures.</td>
</tr>
<tr>
<td>Streambed Sediment</td>
<td>Determine the effectiveness of streambed sediment management strategies.</td>
</tr>
<tr>
<td>Percent Streambed Sediment</td>
<td>Quantify the percent streambed sediment.</td>
</tr>
<tr>
<td>Longitudinal Profile</td>
<td>Document the longitudinal profile of the stream.</td>
</tr>
<tr>
<td>Cross Section (BH/USGS)</td>
<td>Demonstrate cross-sectional stability.</td>
</tr>
<tr>
<td>Platform</td>
<td>Track stream erosion and migration, field measurement at sites.</td>
</tr>
<tr>
<td>Sediment Analysis</td>
<td>Determine the sediment characteristics of the stream.</td>
</tr>
<tr>
<td>Water Quality</td>
<td>Document water quality parameters.</td>
</tr>
<tr>
<td>Biological Water Quality</td>
<td>Document biological water quality parameters.</td>
</tr>
<tr>
<td>Macroinvertebrates</td>
<td>Document macroinvertebrate communities.</td>
</tr>
<tr>
<td>Macrophytes</td>
<td>Document macrophyte communities.</td>
</tr>
<tr>
<td>Vegetation</td>
<td>Document vegetation patterns.</td>
</tr>
<tr>
<td>IGD/ID Assessment</td>
<td>Determine the integrity of the stream corridor.</td>
</tr>
<tr>
<td>S&A Sampling</td>
<td>Assess the stream's condition status.</td>
</tr>
<tr>
<td>Simple Quality</td>
<td>Determine the stream's overall condition.</td>
</tr>
<tr>
<td>Photo Documentation</td>
<td>Document the stream conditions at various locations.</td>
</tr>
<tr>
<td>Riparian Buffers</td>
<td>Document the riparian buffer zones.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stream Functions Pyramid</th>
<th>Fairfax Ecological Recovery Wheel</th>
<th>Biohabitats Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrology</td>
<td>Physical/Structural</td>
<td>Water Quality</td>
</tr>
<tr>
<td>Hydrology</td>
<td>Hydrology</td>
<td>Biological Water Quality</td>
</tr>
<tr>
<td>Geomorphology</td>
<td>Physical/Structural</td>
<td>Biological Water Quality</td>
</tr>
<tr>
<td>Physical/Structural</td>
<td>Physical/Structural</td>
<td>Biological Water Quality</td>
</tr>
<tr>
<td>Phytoplankton</td>
<td>Physical/Structural</td>
<td>Biological Water Quality</td>
</tr>
<tr>
<td>Zooplankton</td>
<td>Physical/Structural</td>
<td>Biological Water Quality</td>
</tr>
<tr>
<td>Fish</td>
<td>Physical/Structural</td>
<td>Biological Water Quality</td>
</tr>
<tr>
<td>External Influences</td>
<td>Physical/Structural</td>
<td>Biological Water Quality</td>
</tr>
<tr>
<td>Physical Conditions</td>
<td>Physical/Structural</td>
<td>Biological Water Quality</td>
</tr>
</tbody>
</table>

Light yellow shading = Monitoring parameter monitored as part of Assessment and Prioritization, or will be measured and project specific results
Light gray shading = Monitoring metric not assigned to a particular year, but will need to be included in additional years
Light green shading = Long-term Monitoring parameter conducted by others (County/USGS) or overall County projects (not necessarily project specific)
Stream Functions Pyramid

0 SOCIAL >> Recreation, community involvement, support, perception, and education

1 HYDROLOGY » Transport of water from the watershed to the channel

2 HYDRAULIC » Transport of water in the channel, on the floodplain, and through sediments

3 GEOMORPHOLOGY » Transport of wood and sediment to create diverse bed forms and dynamic equilibrium

4 PHYSIOCHEMICAL » Temperature and oxygen regulation; processing of organic matter and nutrients

5 BIOLOGY » Biodiversity and the life histories of aquatic and riparian life

Modified from Harman, 2012
Stream Functions + Potential Project Goals

Aligning goals with the stream functions pyramid

— A series of potential project goals were identified for projects in the Long Branch watershed
— Specific project goals were selected for each project (see the project descriptions)
— Goals for each project will be refined at the beginning of the design process

<table>
<thead>
<tr>
<th>Principle</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improve Hydrology</td>
<td>— Attenuate peak discharges (by increasing roughness and storage along watershed flow paths)</td>
</tr>
<tr>
<td></td>
<td>— Increase watershed time of concentration</td>
</tr>
<tr>
<td></td>
<td>— Increase the time of concentration at storm drain outfalls</td>
</tr>
<tr>
<td></td>
<td>— Reduce velocities in the mainstem, in tributaries and at outfalls during runoff events</td>
</tr>
<tr>
<td>Improve Hydraulics</td>
<td>— Improve floodplain connectivity and increase frequency of floodplain inundation</td>
</tr>
<tr>
<td></td>
<td>— Increase floodplain storage and residence time</td>
</tr>
<tr>
<td></td>
<td>— Reduce downstream flooding</td>
</tr>
<tr>
<td>Improve Geomorphology</td>
<td>— Improve lateral stability, thereby reducing bank and bed erosion</td>
</tr>
<tr>
<td></td>
<td>— Diversify channel bedform</td>
</tr>
<tr>
<td></td>
<td>— Optimize channel aggradation</td>
</tr>
<tr>
<td></td>
<td>— Maintain sediment transport</td>
</tr>
<tr>
<td></td>
<td>— Restore near-channel native riparian vegetation communities</td>
</tr>
</tbody>
</table>
Stream Functions + Potential Project Goals Cont.

<table>
<thead>
<tr>
<th>Principle</th>
<th>Goal</th>
</tr>
</thead>
</table>
| Improve Physicochemical Processes | —Promote denitrification during base flow (by raising groundwater elevation, thereby increasing hyporheic exchange)
 —Increase/improve wetlands throughout the riparian corridor
 —Increase channel roughness, thereby increasing material processing |
| Improve Biology and Ecology | —Improve wetland hydrology to support wetland species
 —Improve pool class and increase the area and volume of aquatic habitat, thereby providing greater diversity of habitat
 —Increase and diversify in-channel habitat structure
 —Improve coarse particulate organic matter (CPOM) retention
 —Improve health and structure of the forested riparian corridor
 —Minimize impacts to existing riparian corridor vegetation
 —Reduce presence of non-native, invasive plant species |
| Improve Community | —Protect private property
 —Protect and minimize conflicts with public infrastructure
 —Improve natural areas for public use and nature play
 —Enhance public access to the stream through the elimination of steep, vertical banks
 —Enhance public access to a diverse assemblage of plant communities |
Proposed project monitoring frameworks have been developing, aligning with the goals and the stream functions pyramid

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>PROJECT GOAL</th>
<th>WATER LEVEL</th>
<th>RATING CURVE</th>
<th>GROUNDWATER LEVEL</th>
<th>RAIN GAUGE</th>
<th>TIME-LAPSE PHOTOGRAPHY / USGS HIVIS</th>
<th>WATERSHED MODELING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improve Hydrology</td>
<td>Attenuate peak discharges (by increasing roughness and storage along watershed flow paths)</td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td>Measure rainfall to help establish rainfall-runoff hydrologic relationships and to support other monitoring efforts.</td>
<td>Use a two-dimensional, watershed-wide hydraulic model to evaluate likely project impacts on stream hydraulics.</td>
</tr>
<tr>
<td></td>
<td>Increase watershed time of concentration</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Increase the time of concentration at storm drain outfalls</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Reduce velocities in the mainstem, in tributaries and at outfalls during runoff events</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Improve Hydraulics</td>
<td>Improve floodplain connectivity and increase frequency of floodplain inundation (by altering channel dimension and maintaining vertical stability)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Increase floodplain storage and residence time</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Reduce downstream flooding</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

For more information, see Attachment F: Long Branch Project Monitoring Framework Matrix
RESTORATION TECHNIQUES

Restoration techniques that may be applied throughout the Long Branch corridor include:

- Engineered Log Jams
- Constructed Riffles
- Floodplain Log Sills
- Regenerative Stormwater Conveyance (RSC)
- Bank Protection
- Floodplain Bench
- Large Woody Debris
- Wetland Complex
RESTORATION TECHNIQUES

Engineered Log Jams
An engineered log jam is a wood structure that is designed to prevent channel degradation and promote the development of a specific hydraulic criteria and tie into the stream riparian corridor with minimal disturbance.

Bacon Ridge
Anne Arundel County, MD
RESTORATION TECHNIQUES

Constructed Riffle

Constructed riffles are composed of a mix of gravel and cobble sized material. These structures are proposed to ensure floodplain connection is maintained and are typically located downstream of concentrated flow inputs and where in-stream stormflow velocities and shear stress are predicted to be the greatest.

Breewood
Montgomery County, MD
Floodplain Log Sills

Log sills provide protection of the reconnected floodplain laterally past the armored instream structure width during larger flood flows will be primarily provided by maintaining the existing floodplain vegetation with small, low ground pressure equipment and minimizing areas of disturbance. Permanent seeding is proposed in all disturbed floodplain areas to re-establish herbaceous plants intended to develop thick root densities, good ground cover, and protect slopes from soil erosion during out of bank flow events.

Bacon Ridge at Elks Camp
Anne Arundel County, MD
Regenerative Stormwater Conveyance (RSC)
The regenerative stormwater conveyance (RSC) approach is to stabilize outfall channel bed and banks, attenuate stormflow peaks and filter stormwater, and reduce the sediment and nutrient loading to downstream waterways generated from channel enlargement. An RSC system uses a series of in-stream constructed riffles and cascades to form a series of aquatic pools to help maintain the channel bed at a higher elevation, while providing energy dissipation and stormflow conveyance from the outfall to the receiving channel.

Carriage Hills
Anne Arundel County, MD
RESTORATION TECHNIQUES

Bank Protection
Bank protection is one method to reduce erosive impacts on a stream bank. Boulders and/or tree rootwads can be positioned along the toe of an eroded bank and back filled with soil to create a new stable bank. Boulders provide a higher degree of stability for higher flows whereas rootwads provide increased habitat in addition to protection for moderate to low flows.

River Valley Ranch
Baltimore County, MD
Floodplain Bench
Floodplain benches are implemented on either side of a pilot channel with natural geometry that handles typical baseflows. The bench provides a larger cross section with handles flows above baseflow, reducing flow velocity through surface roughness and protecting the stream bank. Floodplain benches can be used within over widened channels or areas in which the stream invert cannot be raised.

Brentwood Manor
Howard County, MD
RESTORATION TECHNIQUES

Large Woody Debris
Large woody debris are added to provide increased roughness, promote flow diversity, bank protection, and add habitat complexity to stream systems, most typically in constructed pools. Large woody debris can be added along a bank for bank protection or in the center of a pool for added roughness and habitat.

Breewood
Montgomery County, MD
Stage 0 / Wetland Complex
Where site conditions allow, the Stage 0 restoration approach is proposed to restore the physical, chemical, and biological processes of a healthy, resilient stream ecosystem. Stage 0 refers to a pre-channelization phase in which a stream valley is occupied by a forested wetland complex with many anabranched (interweaving) flowpaths and no defined single threaded channel exists. This approach would be utilized coming off small tributaries before reaching the mainstem.

Bacon Ridge at Elks Camp
Anne Arundel County, MD